Developing Assurance Cases for D-MiLS Systems

Richard Hawkins, Tim Kelly, Ibrahim Habli
Department of Computer Science,
The University of York
Overview

• Motivation
• Assurance Case Patterns for D-MILS systems
• Pattern Instantiation
D-MILS Assurance Case

• Aims
 ▪ To use a D-MILS system a system developer must be able to convince others it is secure, safe etc. (1, 3)
 o Assurance cases allow this, but we must help and guide people to do this well
 ▪ Minimise assurance cost and effort for D-MILS systems (2, 3)
 ▪ Ensure the highest levels of assurance can be demonstrated (1)
 o Understand what is required in a D-MILS assurance case
 ▪ Support the objectives of DMILS (2)
 o E.g. compositionality of independently developed components.

• 3 fundamental elements:
 1. D-MILS Assurance Case Patterns
 2. Modular Approach
 3. Automated extraction of instantiation information directly from models wherever possible (e.g. MILS-AADL)
Modular Assurance Case

- Want to usefully organise and partition what must be done to create an assurance case
- Assurance case must align with the compositional approach of D-MILS
- Modular assurance cases allow us to compose large assurance cases from separate but interconnected modules of argument and evidence
 - each assurance case module reasons about one aspect of the overall case
- Dependencies captured by inter-module references ("away goals") to claims in other modules
 - assurance case modules can be developed independently by different organisations
Modular Structure of D-MILS Assurance Case

System Properties Argument

Composition Argument
Software Component Argument
D-MILS Platform Component Argument
Implementation Argument
Modular Structure of D-MILS Assurance Case

System Properties Argument

Composition Argument
Software Component Argument
D-MILS Platform Component Argument
Implementation Argument
System Properties Argument Pattern

• Assurance Guarantees
 ▪ System security/safety properties (informal) are enforced
 o Those properties are complete & correct w.r.t. hazards, threats etc
 ▪ Formal system properties (OCRA contracts) are satisfied in the MILS-AADL model
 o Formal properties are equivalent to informal system properties

• Assurance Dependencies (away goals in other modules)
 ▪ Compositional verification proves properties in the model
 ▪ The MILS-AADL model is faithfully implemented
 ▪ Trusted software components implement their specification
 ▪ D-MILS platform guarantees required properties
Modular Structure of D-MILS Assurance Case

- System Properties Argument
 - Composition Argument
 - Software Component Argument
 - D-MILS Platform Component Argument
 - Implementation Argument
Composition Argument Pattern

• Assurance Guarantees
 ▪ MILS-AADL model satisfies each formal property
 o Refinement and model checking
 ▪ The formal verification results are trustworthy
 o Translations between formal notations

• Assurance Dependencies (away goals in other modules)
 ▪ Trusted components satisfy MILS-AADL implementation specification
 ▪ Assumptions of system property contracts are satisfied
Modular Structure of D-MILS Assurance Case

System Properties Argument

Composition Argument
Software Component Argument
D-MILS Platform Component Argument
Implementation Argument
Software Component Argument Pattern

• Separate module created for each trusted component

• Assurance Guarantees
 ▪ Implementation of software component satisfies MILS-AADL implementation specification
 ○ deliberately avoid constraining the assurance methods (or standard) adopted by third-party providers
 – Domain / application specific

• Assurance Dependencies (away goals in other modules)
 ▪ Identified by assurance case of software component
Modular Structure of D-MILS Assurance Case

System Properties Argument

Composition Argument

Software Component Argument

D-MILS Platform Component Argument

Implementation Argument
Implementation Argument Pattern

• Assurance Guarantees
 ▪ MILS-AADL model is faithfully implemented
 ▪ Generated configuration is correct w.r.t. MILS-AADL model
 o The inputs to the configuration compiler are correct
 – Policy and platform description etc.
 o Configuration compiler tool performs correctly
 o Configuration is well-formed and satisfy all constraints
 ▪ Target-specific configurations are syntactically and semantically correct w.r.t. the configuration

• Assurance Dependencies (away goals in other modules)
 ▪ Target-specific configurations are realised by the D-MILS platform components
Modular Structure of D-MILS Assurance Case

System Properties Argument

Composition Argument

Software Component Argument

D-MILS Platform Component Argument

Implementation Argument
D-MILS Platform Argument Pattern

• Assurance Guarantees
 ▪ D-MILS platform guarantees the required properties
 o Inter-nodal communication occurs only as defined in MILS-AADL model
 – MILS networking system (MNS) controls network communication
 o Intra-nodal interference occurs only as defined in MILS-AADL model
 – MILS seperation kernel controls access to shared memory
 o Vulnerabilities and threats are mitigated

• Assurance Dependencies (away goals in other modules)
 ▪ Target-specific configurations are correctly interpreted by the D-MILS platform components
 ▪ Separate module created for each D-MILS platform component
 o SK, TTE switches, MNS…
Pattern Instantiation

• Creation of assurance case must not be burden to adoption of D-MILS approach

• Argument patterns essentially define information requirements
 ▪ to instantiate the assurance claims, provide evidence and make instantiation choices

• Possible to manually obtain this to instantiate pattern
 ▪ But, repetitive and mechanistic in nature, time-consuming and prone to human error

• However, if you have the right models should be possible to largely automatically generate the assurance case directly from the models
 ▪ We have developed a novel approach that achieves this
Automated Instantiation

DMILS Argument Patterns (GSNML files)

DMILS GSN Editor

Weaving Model (Ecore)

Visualised in GSN Editor

DMILS Assurance Argument (GSNML)

Generates

Instantiation Program (eol)

Creates

Required System Models (e.g. AADL)
Conclusions

• Our model-based approach to creating D-MILS assurance case provides:
 ▪ Reduced time and effort in creation
 ▪ Increased consistency in instantiation
 ▪ Consistency between argument and system models
 ▪ Validation and feedback

• More straightforward for D-MILS system developers to generate a rigorous assurance case for their systems